Para poder realizar un análisis efectivo hay que sacar varios reportes awr y compararlos para establecer diferencias. En esos casos, yo prefiero tener toda la historia disponible de un patallazo para así comparar mas facilmente, ver si alguna métrica esta en valores no habituales, poder exportar la salida del query a una planilla y realizar un gráfico historico para confeccionar un informe.
Antes de ejecutar el query es importante aclarar que los valores reportados están en unidades por segundo (primera columna del load profile de awr) y que funciona en bases 10g o superiores.
with intervals
as
(select snap,
extract(second from int)+
extract(minute from int)*60+
extract(hour from int)*60*60 int_sec
from
(select end_interval_time snap,
end_interval_time-lead(end_interval_time)
over (partition by startup_time order by snap_id desc) int
from dba_hist_snapshot))
select to_char(snap_time,'YYYY/MM/DD HH24') snap_time,
round((redo_size-lead(redo_size)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Redo Size",
round((logical_reads-lead(logical_reads)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Logical Reads",
round((db_block_changes-lead(db_block_changes)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Block Changes",
round((physical_reads-lead(physical_reads)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Physical Reads",
round((physical_writes-lead(physical_writes)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Physical Writes",
round((user_calls-lead(user_calls)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "User Calls",
round((parses-lead(parses)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Parses",
round((parses_hard-lead(parses_hard)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Parses Hard",
round((sorts-lead(sorts)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Sorts",
round((logons-lead(logons)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Logons",
round((executes-lead(executes)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Exectutes",
round((user_rollbacks-lead(user_rollbacks)
over (partition by startup_time order by snap_time desc)+
user_commits-lead(user_commits)
over (partition by startup_time order by snap_time desc))/
int.int_sec,2) "Transactions"
from
(select s.end_interval_time snap_time,
s.startup_time startup_time,
max(decode(ss.stat_name,'redo size',value,null)) redo_size,
max(decode(ss.stat_name,'user rollbacks',value,null)) user_rollbacks,
max(decode(ss.stat_name,'user commits',value,null)) user_commits,
max(decode(ss.stat_name,'session logical reads',value,null)) logical_reads,
max(decode(ss.stat_name,'db block changes',value,null)) db_block_changes,
max(decode(ss.stat_name,'physical reads',value,null)) physical_reads,
max(decode(ss.stat_name,'physical writes',value,null)) physical_writes,
max(decode(ss.stat_name,'user calls',value,null)) user_calls,
max(decode(ss.stat_name,'parse count (total)',value,null)) parses,
max(decode(ss.stat_name,'parse count (hard)',value,null)) parses_hard,
max(decode(ss.stat_name,'sorts (memory)',value,null)) sorts,
max(decode(ss.stat_name,'logons cumulative',value,null)) logons,
max(decode(ss.stat_name,'execute count',value,null)) executes
from dba_hist_sysstat ss,
dba_hist_snapshot s
where s.snap_id = ss.snap_id
and ss.stat_name in ('user rollbacks','user commits','session logical reads',
'db block changes','physical reads','physical writes','user calls',
'parse count (total)','parse count (hard)','sorts (memory)','logons cumulative',
'execute count','redo size')
group by s.end_interval_time,s.startup_time) t,
intervals int
where t.snap_time = int.snap
order by snap_time desc